

Features

- Hot Pluggable QSFP28 form factor
- Operating data rate 103.125Gbps
- Single +3.3V power supply
- Duplex LC receptacles
- Max power dissipation <4.5W
- Up to 500m transmission on single mode fiber
- 4x25G electrical interface (OIF CEI-28GVSR)
- 4 channel PIN receivers
- Built-in digital diagnostic function
- Commercial temperature range 0°C to 70°C

Compliance

- QSFP28 MSA
- Compliant with QSFP Electrical MSA SFF-8636
- Compliant with QSFP Mechanical MSA SFF-8665
- IEEE 802.3bm
- RoHS

Applications

- Switches with QSFP28 ports
- Router with QSFP28 Ports
- Server or Network Adapter Card
- Optical Transmission System
- Other devices with QSFP28 Ports

Description

The 100G-Q28-DR Transceiver is a high-performance optical module designed for 500-meter optical communication applications, compliant with the IEEE 802.3cd and 100G Lambda MSA standards. It operates on a 1310 nm center wavelength and supports a 50 Gbaud PAM4 data rate, making it ideal for high-speed data center interconnects and enterprise networks.

The module integrates advanced technologies to ensure efficient signal transmission and reception. On the transmitter side, it combines an EML Driver and a cooled EML to generate high-quality optical signals. On the receiver side, the input optical signal is coupled to a PIN photo-diode detector for precise signal detection. A DSP-based gearbox is employed to convert 4x25Gbps NRZ signals into a 1x50Gbaud PAM4 signal, while a 4-channel re-timer and FEC block enhance signal integrity and error correction.

Designed for reliability and scalability, the 100G-Q28-DR complies with the QSFP28 MSA standard, featuring a compact form factor, a duplex LC connector, and a digital diagnostic interface (DDM) for real-time monitoring. With a maximum power consumption of 4.5W, it is optimized for energy efficiency and robust performance in harsh operating conditions, including extreme temperature, humidity, and EMI interference. This transceiver is a versatile solution for next-generation 100G optical networks.

Product performance Specifications

1. Basic Product Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Storage Temperature	Ts	-40	-	+85	°C
Supply Voltage	Vcc	-0.5	-	3.6	V
Relative Humidity	RH	5	-	85	%
Operating Case Temperature	T _C	0	-	70	°C
Power Supply Voltage	V_{CC}	3.135	3.3	3.465	V
Power Supply Current	Icc			1.36	Α
Optical Data Rate (PAM4)			53.125		GBd
Data Rate Accuracy		-100		100	ppm
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴	
Post-FEC Bit Error Ratio				1x10 ⁻¹²	
Control Input Voltage High		2		Vcc	V
Control Input Voltage Low		0		0.8	V
Link Distance with G.652	D	0.2		500	m

2. Product Optical and Electrical Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
	Tran	smitter			
Overload Differential Voltage pk-pk	TP1a	900			mV
Common Mode Voltage (Vcm)	TP1	-350		2850	mV
Differential Termination Resistance Mismatch	TP1			10	%
Differential Return Loss (SDD11)	TP1			See CEI-28G-VSR Equation13-19	dB
Common Mode to Differential conversion and Differential to Common Mode conversion (SDC11, SCD11)	TP1			See CEI-28G-VSR Equation13-20	
Stressed Input Test	TP1a	See CEI-28G-VSR Section13.3.11.2.1			
	Re	ceiver			
Differential Voltage, pk-pk	TP4			900	mV
Common Mode Voltage (Vcm)	TP4	-350		2850	mV
Common Mode Noise, RMS	TP4			17.5	mV
Differential Termination Resistance Mismatch	TP4			10	%
Differential Return Loss (SDD22)	TP4			See CEI-28G-VSR Equation13-19	dB
Common Mode to Differential conversion and Differential to Common Mode conversion (SDC22, SCD22)	TP4			See CEI-28G-VSR Equation13-21	dB
Common Mode Return Loss (SCC22)	TP4			-2	dB
Transition Time, 20 to 80%	TP4	9.5			ps
Vertical Eye Closure (VEC)	TP4			5.5	dB
Eye Width at 10-15 probability (EW15)	TP4	0.57			UI
Eye Height at 10-15 probability (EH15)	TP4	228			mV
Differential Voltage, pk-pk	TP4			900	mV
Common Mode Voltage (Vcm)	TP4	-350		2850	mV
	Tran	smitter			
Center Wavelength	λt	1304.5		1317.5	nm
Side Mode Suppression Ratio	SMSR	30			dB
Average Launch Power	PAVG	-2.9		4	dBm
Outer Optical Modulation Amplitude (OMAouter)	POMA	0.8		4.2	dBm
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ)	TDECQ			3.4	dB

TDECQ - 10*log10(Ceq)				3.4	dB	
Extinction Ratio	ER	3.5			dB	
RIN15.6 OMA	RIN			-136	dB/HZ	
Optical Return Loss Tolerance	TOL			15.5	dB	
Transmitter Reflectance	RT			-26	dB	
Transmitter Transition Time				17	ps	
Average Launch Power of OFF Transmitter	Poff			-15	dBm	
Optical eye mask		Compliant with IEEE std 802.3bm-2015				
Receiver						
Center Wavelength	λt	1304.5		1317.5	nm	
Damage Threshold	THd	5			dBm	
Average Receive Power		-5.9		4	dBm	
Receive Power (OMAouter)				4.2	dBm	
Receiver Sensitivity (OMAouter)	SEN			Equation(1)	dBm	
Stressed Receiver Sensitivity	000					
(OMAouter)	SRS			-1.9	dBm	
(OMAouter) Receiver Reflectance	RR			-1.9 -26	dBm	
		-15				
Receiver Reflectance	RR	-15			dB	

Note1: Receiver sensitivity is informative. shall be measured with conformance test signal for BER=1x10-12.

Note2: Test conditions: Stressed eye closure (SEC) = 4.3 dB, Stressed eye J2 Jitter = 0.39 UI, Stressed eye J4 Jitter = 0.53 UI, OMA = 3dBm, Stressed receiver eye mask {X1, X2, X3, Y1, Y2, YR} {0.28, 0.5, 0.5, 0.33, 0.33, 0.4}

Recommended Host Board Power Supply Circuit

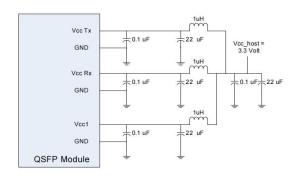


Figure 1:Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

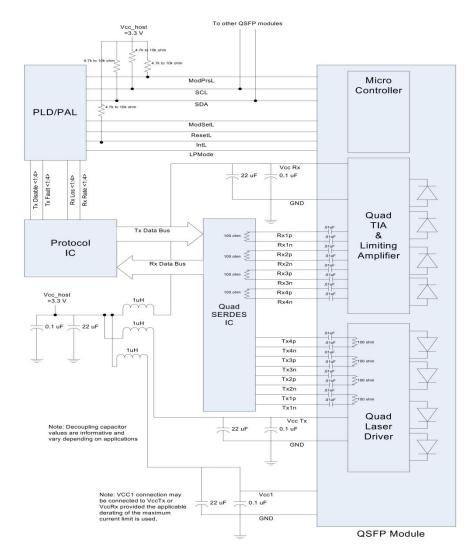


Figure2:Recommended Interface Circuit

Optical Interface

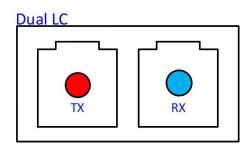


Figure3:Optical Lane Sequence

Pin-out Definition

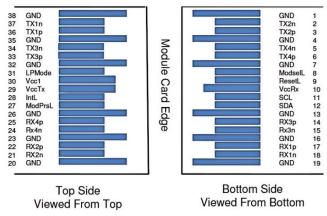


Figure4:Pin view

Pin Function Definitions

Pin	Logic	Symbol	Description	
1		GND	Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	3
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7		GND	Ground	
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ReSelL	Module Select	
10		Vcc Rx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	
12	LVCMOS-I/O	SDA	2-wire serial interface data	4
13		GND	Ground	1

14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3
15	CML-O	Rx3n	Receiver Inverted Data Output	3
16		GND	Ground	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	3
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3
25	CML-O	Rx4p	Receiver Non-Inverted Data Output Ground	3
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	4
28	LVTTL-O	IntL	Interrupt	4
29		Vcc Tx	+3.3V Power supply transmitter	2
30		Vcc1	+3.3V Power supply	2
31	LVTTL-I	LPMode	Low Power Mode	4
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3
34	CML-I	Tx3n	Transmitter Inverted Data Input	3
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3
37	CML-I	Tx1n	Transmitter Inverted Data Input	3
38		GND	Ground	1

Note1: GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

Note2: Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in Table. Recommended host board power supply filtering is shown in Host board power supply circuit. Vcc Rx Vcc1 and Vcc Tx may be internally connected within the QSFP module in any combination. The connector pins are each rated for a maximum current of 500 mA.

Note3: High-speed signal interfaces require differential pairs (e.g. TX1+/TX1-) with tightly matched impedances (typically 100Ω).

Note4: The management and control signals are based on LVTTL level logic and are used for functions such as module selection and reset.

Monitoring Specification

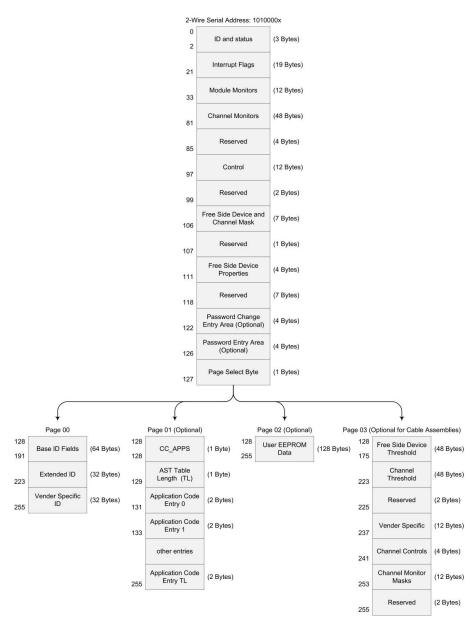


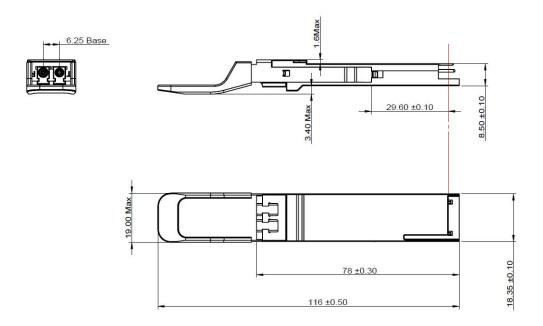
Figure5:Memory map

Memory map Table

Byte	Unit	Name	Description			
	Lower Page 00h					
0	1	Identifier	Type of transceiver,Page 00h Byte 0 and Page 00h Byte 128 shall contain the same parameter values.			
1	1	Status	Revision Compliance			
2	1	Status	Status indicators			

3-21	19	Interrupt Flags	Consist of interrupt flags for LOS, Tx Fault, warnings and alarms. The non-asserted state shall be 0b.
22	1	Temperature MSB	Internally measured temperature (MSB)
23	1	Temperature LSB	Internally measured temperature (LSB)
24-25	2	Reserved	Reserved
26	1	Supply Voltage MSB	Internally measured supply voltage (MSB)
27	1	Supply Voltage LSB	Internally measured supply voltage (LSB)
28-29	2	Reserved	Reserved
30-33	4	Vendor Specific	Vendor Specific
34	1	Rx1 Power MSB	Internally measured Rx1 input power
35	1	Rx1 Power LSB	internally measured txx1 input power
36	1	Rx2 Power MSB	Internally measured Rx2 input power
37	1	Rx2 Power LSB	internally measured txxz input power
38	1	Rx3 Power MSB	Internally measured Rx3 input power
39	1	Rx3 Power LSB	internally measured total input power
40	1	Rx4 Power MSB	Internally measured Rx4 input power
41	1	Rx4 Power LSB	internally measured tix+ input power
42	1	Tx1 Bias MSB	Internally measured Tx1 bias
43	1	Tx1 Bias LSB	internally intersured 17.1 bias
44	1	Tx2 Bias MSB	Internally measured Tx2 bias
45	1	Tx2 Bias LSB	internally incasured 172 bias
46	1	Tx3 Bias MSB	Internally measured Tx3 bias
47	1	Tx3 Bias LSB	internally incasured 120 bias
48	1	Tx4 Bias MSB	Internally measured Tx4 bias
49	1	Tx4 Bias LSB	internally measured 124 bids
50	1	Tx1 Power MSB	Internally measured Tx1 Power
51	1	Tx1 Power LSB	internally measured 1211 owel
52	1	Tx2 Power MSB	Internally measured Tx2 Power
53	1	Tx2 Power LSB	internally measured 1221 owel
54	1	Tx3 Power MSB	Internally measured Tx3 Power
55	1	Tx3 Power LSB	
56	1	Tx4 Power MSB	Internally measured Tx4 Power
57	1	Tx4 Power LSB	
58-65	8	Reserved	Reserved channel monitor set 4
66-73	8	Reserved	Reserved channel monitor set 5
74-81	8	Vendor Specific	Vendor Specific
82-85	4	Reserved	Reserved
86-99	14	Control	Control
100-106	7	Free Side Device and Channel Masks	Free Side Device and Channel Masks
107-110	4	Free Side Device Properties	Free Side Device Properties

		Assigned for use by PCI	Used for:
111-112	2	Express	- The PCI Express External Cable Specification
		_/,p. 000	- The PCI Express OCuLink Specification
113-117	4	Free Side Device Properties	Free Side Device Properties
118	1	Reserved	Reserved
119-122	4	Password Change Entry Area	Password Change Entry Area
123-126	4	Password Entry Area	Password Entry Area
127	1	Page Select Byte	Page Select Byte
			Upper Page 00h
128	1	Identifier	Identifier Type of free side device.(See SFF-8024 Transceiver Management)
129	1	Ext. Identifier	Extended Identifier of free side device. Includes power classes, CLEI codes, CDR capability.
130	1	Connector Type	Code for media connector type. (See SFF-8024 Transceiver Management)
131-138	8	Specification Compliance	Code for electronic or optical compatibility.
139	1	Encoding	Code for serial encoding algorithm. (See SFF-8024 Transceiver Management)
140	1	Signaling rate, nominal	Nominal signaling rate, units of 100 MBd. For rate > 25.4 GBd, set this to FFh and use Byte 222.
141	1	Extended Rate Select Compliance	Tags for extended rate select compliance.
142	1	Length (SMF)	Link length supported at the signaling rate in byte 140 or page 00h byte 222, for SMF fiber in km *. A value of 1 shall be used for reaches from 0 to 1 km.
143	1	Length (OM3 50 um)	Link length supported at the signaling rate in byte 140 or page 00h byte 222, for EBW 50/125 um fiber (OM3), units of 2 m *
144	1	Length (OM2 50 um)	Link length supported at the signaling rate in byte 140 or page 00h byte 222, for 50/125 um fiber (OM2), units of 1 m *
145	1	Length (OM1 62.5 um) or Copper Cable Attenuation	Link length supported at the signaling rate in byte 140 or page 00h byte 222, for 62.5/125 um fiber (OM1), units of 1 m *, or copper cable attenuation in dB at 25.78 GHz.
146	1	Length (passive copper or active cable or OM4 50 um)	Length of passive or active cable assembly (units of 1 m) or link length supported at the signaling rate in byte 140 or page 00h byte 222, for OM4 50/125 um fiber (units of 2 m) as indicated by Byte 147. See 6.3.12.
147	1	Device technology	Device technology
148-163	16	Vendor name	Free side device vendor name (ASCII)
164	1	Extended Module	Extended Module codes for InfiniBand.
165-167	3	Vendor OUI	Free side device vendor IEEE company ID.
168-183	16	Vendor PN	Part number provided by free side device vendor(ASCII)
184-185	2	Vendor rev	Revision level for part number provided by the vendor(ASCII)



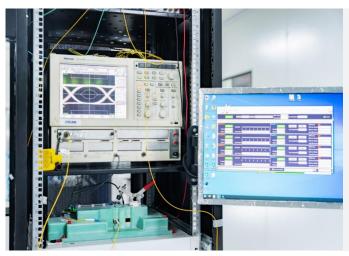
186-187	2	Wavelength or Copper	Nominal laser wavelength (wavelength=value/20 in nm) or copper cable
		Cable Attenuation	attenuation in dB at 2.5 GHz (Byte 186) and 5.0 GHz (Byte 187)
		Wavelength tolerance or	The range of laser wavelength (+/- value) from nominal wavelength.
188-189	2	Copper Cable Attenuation	(wavelength Tol. =value/200 in nm) or copper cable attenuation in dB at
400	4		7.0 GHz (Byte 188) and 12.9 GHz (Byte 189)
190	1	Max case temp	Maximum case temperature
191	1	CC_BASE	Check code for base ID fields (Bytes 128-190)
192	1	Link codes	Extended Specification Compliance Codes (See SFF-8024)
193-195	3	Options	Optional features implemented.
196-211	16	Vendor SN	Serial number provided by vendor.(ASCII)
212-219	8	Date Code	Vendor's manufacturing date code.
220	1	Diagnostic Monitoring	Indicates which type of diagnostic monitoring is implemented (if any) in
		Туре	the free side device. Bit 1,0 Reserved.
221	1	Enhanced Options	Indicates which optional enhanced features are implemented in the free
			side device.
222	1	CC_EXT	Check code for the Extended ID Fields (Bytes 192-222)
224-255	32	Vendor Specific	Vendor Specific EEPROM
		Pa	age 02h (Optional)
128-255	128	User EEPROM Data	
		Pa	age 03h (Optional)
128-129	2	Temp High Alarm	MSB at lower byte address
130-131	2	Temp Low Alarm	MSB at lower byte address
132-133	2	Temp High Warning	MSB at lower byte address
134-135	2	Temp Low Warning	MSB at lower byte address
136-143	8	Reserved	Reserved
144-145	2	Vcc High Alarm	MSB at lower byte address
146-147	2	Vcc Low Alarm	MSB at lower byte address
148-149	2	Vcc High Warning	MSB at lower byte address
150-151	2	Vcc Low Warning	MSB at lower byte address
152-159	8	Reserved	Reserved
160-175	16	Vendor Specific	Vendor Specific
176-177	2	Rx Power High Alarm	MSB at lower byte address
178-179	2	Rx Power Low Alarm	MSB at lower byte address
180-181	2	Rx Power High Warning	MSB at lower byte address
182-183	2	Rx Power Low Warning	MSB at lower byte address
184-185	2	Tx Bias High Alarm	MSB at lower byte address
186-187	2	Tx Bias Low Alarm	MSB at lower byte address
188-189	2	Tx Bias High Warning	MSB at lower byte address
190-191	2	Tx Bias Low Warning	MSB at lower byte address
192-193	2	Tx Power High Alarm	MSB at lower byte address
194-195	2	Tx Power Low Alarm	MSB at lower byte address
196-197	2	Tx Power High Warning	MSB at lower byte address
100 101		-	•

198-199	2	Tx Power Low Warning	MSB at lower byte address
200-207	8	Reserved	Reserved thresholds for channel parameter set 4
208-215	8	Reserved	Reserved thresholds for channel parameter set 5
216-223	8	Vendor Specific	Vendor Specific
224	1	Tx EQ & Rx Emphasis Magnitude ID	Tx EQ & Rx Emphasis Magnitude ID
225	1	Rx output amplitude support indicators	Rx output amplitude support indicators
226-229	4	Control options advertising	Control options advertising
230-241	12	Optional Channel Controls	Optional Channel Controls
242-247	6	Channel Monitor Masks	Channel Monitor Masks
248-249	2	Reserved	Reserved channel monitor masks set 4
250-251	2	Reserved	Reserved channel monitor masks set 5
252-255	4	Reserved	Reserved

Mechanical Dimension

Test Center

1. Performance Testing


Every fiber optic transceiver is thoroughly tested by the LSOLINK Assurance Program, which is equipped with the world's most advanced analytical equipment to ensure that our transceivers meet the industry's international public protocol standards while still functioning flawlessly in your facility.

Optical Spectrum Inspection

Using the industry's leading optical spectrum analyser to check in real time that the parameters of the optical transceiver's laser comply with industry standards.

- Peak: Peak wavelength and peak level
- > 2nd Peak: Side-mode wavelength and level
- > Mean WI: Center wavelength
- Total Power: Total power of spectrum
- > SMSR: Side-Mode Suppression Ratio

Optical Signal Quality Inspection

Using highly efficient sampling oscilloscopes and BERT testers, equipped with an automated test platform to accurately test the signal quality of the transceiver, test records are kept for up to 5 years to ensure the traceability of each transceiver.

- Eye Mask Margin(NRZ)
- > TDECQ(PAM4):transmitter dispersion eye closure
- > OMA: Optical modulation amplitude
- **BER:** Bit error rate
- ER: Extinction Ratio

Flow Pressure Test

Using multi-protocol network traffic analyser with various brands of switches to test the transceiver's ability to transmit at full speed.

- **Bandwidth:** Actual transceiver bandwidth on the port
- Packet Loss
- ➤ Packet Errors:CRC Errors/PCS Errors/Symbol Errors
- LinkDown Counts
- > latency

Aboveis part of our test bed network equipment. For more information, Please click <u>download</u> for optical transceiver performance test report.

2. Quality Control

We adopt advanced quality management solutions. Each transceiver is self-inspected, including:20x microscope inspection, 200x microscope inspection, and QC process inspection.

visual inspection

Microscopic inspection: 20X

Microscopic inspection: 200X

Reliability Verification

Optical endface inspection

OQC Inspection

3. Compatibility Testing

Each optical transceiver is tested in LSOLINK's library of compatibility test equipment to ensure perfect compatibility with multiple brands on the market.

Arista DCS-7060SX2-48YC6-R

Cisco N9K-C9318YC-EX

Cisco C9500-24Y4C

JuniperQFX5110-48S-4C

Aruba 8360-32Y4C

Huawei S6720-30L-HI-24S

Aboveis part of our test bed network equipment. For more information, Please click <u>download</u> to get the compatibility test report of each brand of optical transceiver.

Order Information

Part Number	Description
100G-Q28-SR4	100GBASE-SR4 QSFP28 100G 850nm 100m DOM MTP/MPO-12 UPC MMF Transceiver Module
100G-Q28-PSM4	100GBASE-PSM4 QSFP28 100G 1310nm 2km DOM MTP/MPO-12 APC SMF Transceiver Module
100G-Q28-CWDM4	100GBASE-CWDM4 QSFP28 100G 1310nm 2km DOM LC SMF Transceiver Module
100G-Q28-SR-BD	100GBASE-SR Bi-Directional QSFP28 850nm 100m DOM Duplex LC MMF Optical Transceiver Module
100G-Q28-SWDM4	100GBASE-SWDM4 QSFP28 100G 850nm 100m DOM LC MMF Transceiver Module
100G-Q28-LX4	100GBASE-LX4 QSFP28 100G 1310nm 100m/2km DOM LC MMF/SMF Transceiver Module
100G-Q28-LR4	100GBASE-LR4 QSFP28 100G 1310nm 10km DOM LC SMF Transceiver Module
100G-Q28-ER4	100GBASE-ER4 QSFP28 100G 1310nm 40km DOM LC SMF Transceiver Module
100G-Q28-ZR4	100GBASE-ZR4 QSFP28 100G 1310nm 80km DOM LC SMF Transceiver Module
112G-Q28-LR4	100/112GBASE-LR4 QSFP28 100G Dual Rate 1310nm 10km DOM LC SMF Transceiver Module
112G-Q28-ER4	100/112GBASE-ER4 QSFP28 100G Dual Rate 1310nm 40km DOM LC SMF Transceiver Module
100G-Q28-DR	100GBASE-DR QSFP28 100G PAM4 1310nm 500m DOM LC SMF Transceiver Module
100G-Q28-FR	100GBASE-FR QSFP28 100G PAM4 1310nm 2km DOM LC SMF Transceiver Module
100G-Q28-LR	100GBASE-LR QSFP28 100G PAM4 1310nm 10km DOM LC SMF Transceiver Module
100G-Q28-ER	100GBASE-ER QSFP28 Single Lambda 1310nm 40km DOM Duplex LC SMF Optical Transceiver Module

Further Information

Lighting the Path to Global Links

- Web | www.lsolink.com
- ☑ Email | For Sales@lsolink.com

Disclaimer

- We are committed to continuous product improvement and feature upgrades, and the contents cont ained in this manual are subject to change without notice.
- 2. Nothing herein should be construed as constituting an additional warranty.
- LSOLINK assumes no responsibility for the use or reliability of equipment or software not provided by LSOLINK. Copyright LSOLINK.COM All Rights