

Features

- Operating data rate 425Gbps
- Wire AWG:30AWG,28AWG,26AWG
- Available length range 1m~3m
- Data rates per channel 106.25Gbps
- Power supply: +3.3V
- Max power dissipation <1.5W
- Commercial temperature range 0°C to 70°C

Compliance

- Compliant with OSFP MSA and QSFP112 MSA
- Compliant with CMIS 5.1
- IEEE 802.3db
- RoHS

Applications

- 400 Gigabit Ethernet
- High Performance Computing (HPC)
- Data Center & Networking Equipment

Description

The 400G-QDD-O-CU is a passive direct attach copper (DAC) cable designed to support 400G data transmission. Featuring a QSFP-DD connector on one end and an OSFP connector on the other, this cable provides a reliable and efficient solution for high-speed interconnects in data centers and high-performance computing environments. The 400G-QDD-O-CU ensures seamless data transmission with minimal latency, offering a cost-effective alternative to optical cables for short-distance connections.

Ideal for connecting high-performance switches, servers, and network adapters, the 400G-QDD-O-CU cable ensures optimal data transfer rates with low power consumption. Its passive design minimizes the need for additional power, providing an energy-efficient solution for short-reach data transmission. This cable is well-suited for applications in cloud computing, big data analytics, and Al-driven environments, where high bandwidth and fast communication are essential for modern data processing and network infrastructure.

Product performance Specifications

1. Basic Product Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Storage Temperature	Ts	-40	-	+85	°C
Supply Voltage	Vcc	-0.5	3.3	4.0	V
Relative Humidity	RH	5	+	85	%
Operating Case Temperature	T _C	0	-	70	°C
Power Supply Voltage	V _{CC}	3.135	3.3	3.465	V
Power Dissipation	PD	-	-	0.1	W
Data Rate	DR	-	425	-	Gbps

2. High Speed Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Resistance	Rcon			3	Ω	
Insulation Resistance	Rins			10	mΩ	
Raw cable impedance	Zca	95		110	Ω	
Mated connector Impedance	Zmated	85		110	Ω	
		11		18 1.5M		
Maximum insertion Loss at 26.56 GHz	SDD21			19.75 2.0M	dB	
20.00 GHZ		0.5		25.3 3.0M		
Differential to common-mode return loss	SCD11/22	RLcd(f)	$0 \ge \begin{cases} 22 - 10(f/26.56) \\ 15 - 3(f/26.56) \end{cases}$	$0.05 \le f < 26.56 $ $26.56 \le f \le 40$	dB	0.05 to 40GHz

Differential to common-mode conversion loss	SCD21-SD D21	Conversio	$ \ln \log(f) - IL(f) $ $ \geq \begin{cases} 10 \\ 14 - 0.3108f \end{cases} $	$0.05 \le f < 12.89 $ f $12.89 \le f \le 40$	dB	0.05 to 40GHz
Common-mode to common-mode return loss	SCC11/22		RLCC ≥18		dB	0.05 to 40GHz
Minimum COM	COM	3			dB	

3. Product Optical and Electrical Characteristics

Test Type	Test Item	24AWG	26AWG	28AWG	30AWG
	Differential impedance	100±5Ω at TDR	100±5Ω	100±5Ω	100±5Ω at TDR
	Mutual capacitance	14pF/ft nominal	14pF/ft nominal	14pF/ft nominal	14pF/ft nominal
	Time delay	1.31ns/ft nominal, (4.3ns/m) nominal	1.35ns/ft nominal	1.35ns/ft nominal	1.35ns/ft nominal, (4.3ns/m) nominal
Electrical	Time delay skew (within pairs)	80ps/10m maximum	120ps/8.5m maximum	120ps/7m maximum	50ps/5.5m maximum
Characteristics	Time delay skew (between pairs)	350ps/10m maximum	500ps/8.5m maximum	500ps/7m maximum	350ps/5.5m maximum
	Attenuation	10dB/10m maximum at 1.25Ghz	10dB/8.5m maximum at 1.25Ghz	10dB/7m maximum at 1.25Ghz	8.4dB/5.5m maximum at 1.25Ghz
	Conductor DC Resistance	0.026Ω /ft maximum at 20°C	0.04Ω /ft maximum at 20°C	0.06Ω/ft maximum at 20°C	0.01Ω/ft maximum at 20°C
	Conductors (two pair)	24AWG Solid, Silver plated copper	26AWG Solid, Silver plated copper	28AWG Solid, Silver plated copper	30AWG Solid, Silver plated copper
	Insulation	Foam polyolefin	Foam polyolefin	Foam polyolefin	Foam polyolefin
	Pair drain wire	26AWG Solid, Silver plated copper	28AWG Solid, Silver plated copper	30AWG Solid, Silver plated copper	30AWG Solid, Silver plated copper
Physical Characteristics	Overall cable shield	Aluminum/polyester tape, 125% coverage, Tin plated copper braid, 38AWG, 85% coverage	Aluminum/polyester tape, 125% coverage, Tin plated copper braid, 38AWG, 85% coverage	Aluminum/polyest er tape, 125% coverage,Tin plated copper braid, 38AWG, 85% coverage	Aluminum/polyester tape, 125% coverage,Tin plated copper braid, 38AWG, 85% coverage
	Outer diameter	6.0mm	5.2mm	4.7mm	4.2mm

Recommended Host Board Power Supply Circuit

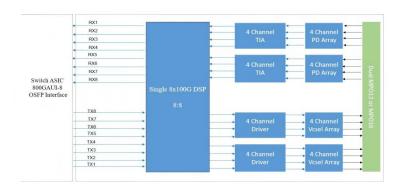


Figure 1: Module Block Diagram

Recommended Interface Circuit

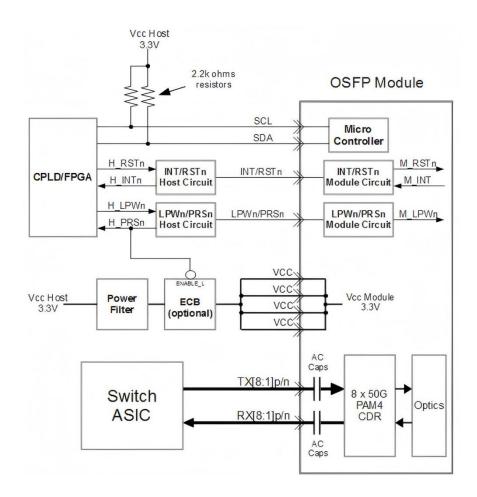


Figure2:Recommended Interface Circuit

OSFP Pin-out Definition

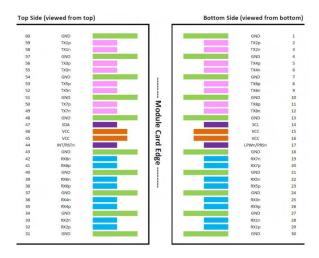


Figure3:OSFP Pin view

OSFP Pin Function Definitions

Pin	Logic	Symbol	Description	Note
1		GND	Ground	
2	CML-I	TX2p	Transmitter Data Non-Inverted	
3	CML-I	TX2n	Transmitter Data Inverted	
4		GND	Ground	
5	CML-I	TX4p	Transmitter Data Non-Inverted	
6	CML-I	TX4n	Transmitter Data Inverted	
7		GND	Ground	
8	CML-I	TX6p	Transmitter Data Non-Inverted	
9	CML-I	TX6n	Transmitter Data Inverted	
10		GND	Ground	
11	CML-I	TX8p	Transmitter Data Non-Inverted	
12	CML-I	TX8n	Transmitter Data Inverted	
13		GND	Ground	
14	LVCMOS-I/O	SCL	2-wire Serial interface clock	1
15		VCC	+3.3V Power	
16		VCC	+3.3V Power	
17	Multi-Level	LPWn/PRSn	Low-Power Mode / Module Present	2
18		GND	Ground	
19	CML-O	RX7n	Receiver Data Inverted	
20	CML-O	RX7p	Receiver Data Non-Inverted	

21		GND	Ground	
22	CML-O	RX5n	Receiver Data Inverted	
23	CML-O	RX5p	Receiver Data Non-Inverted	
24		GND	Ground	
25	CML-O	RX3n	Receiver Data Inverted	
26	CML-O	RX3p	Receiver Data Non-Inverted	
27		GND	Ground	
28	CML-O	RX1n	Receiver Data Inverted	
29	CML-O	RX1p	Receiver Data Non-Inverted	
30		GND	Ground	
31		GND	Ground	
32	CML-O	RX2p	Receiver Data Non-Inverted	
33	CML-O	RX2n	Receiver Data Inverted	
34		GND	Ground	
35	CML-O	RX4p	Receiver Data Non-Inverted	
36	CML-O	RX4n	Receiver Data Inverted	
37		GND	Ground	
38	CML-O	RX6p	Receiver Data Non-Inverted	
39	CML-O	RX6n	Receiver Data Inverted	
40		GND	Ground	
41	CML-O	RX8p	Receiver Data Non-Inverted	
42	CML-O	RX8n	Receiver Data Inverted	
43		GND	Ground	
44	Multi-Level	INT/RSTn	Module Interrupt / Module Reset	2
45		VCC	+3.3V Power	
46		VCC	+3.3V Power	
47	LVCMOS-I/O	SDA	2-wire Serial interface data	1
48		GND	Ground	
49	CML-I	TX7n	Transmitter Data Inverted	
50	CML-I	TX7p	Transmitter Data Non-Inverted	
51		GND	Ground	
52	CML-I	TX5n	Transmitter Data Inverted	
53	CML-I	TX5p	Transmitter Data Non-Inverted	
54		GND	Ground	
55	CML-I	TX3n	Transmitter Data Inverted	
56	CML-I	TX3p	Transmitter Data Non-Inverted	
57		GND	Ground	
58	CML-I	TX1n	Transmitter Data Inverted	

59	CML-I	TX1p	Transmitter Data Non-Inverted	
60		GND	Ground	

Note1: Open-Drain with pull up resistor on Host.

Note2: See pin description for required circuit.

QSFP-DD Pin-out Definition

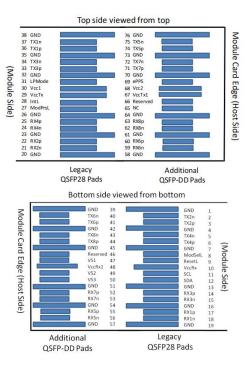


Figure4:QSFP-DD Pin view

QSFP-DD Pin Function Definitions

Pin	Logic	Symbol	Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7		GND	Ground	
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		Vcc Rx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	
12	LVCMOS-I/O	SDA	2-wire serial interface data	
13		GND	Ground	1

14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16	CIVIL-O	GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	'
18	CML-O	Rx1n	Receiver Inverted Data Output Receiver Inverted Data Output	
19	CIVIL-O	GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	'
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23	OIVIL-O	GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	'
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26	CIVIL-O	GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	,
21	LVIIL-O	WOULTSE	Interrupt. Optionally configurable as RxLOSL via the management interface	
28	LVTTL-O	IntL/RxLOSL	(SFF-8636)	
29		VccTx	+3.3V Power supply transmitter	2
30		Vcc1	+3.3V Power supply	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	1
39		GND	Ground	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	
41	CML-I	Tx6p	Transmitter Non-Inverted Data Input	
42		GND	Ground	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	
45		GND	Ground	1
46		Reserved	For future use	3
47		VS1	Module Vendor Specific 1	3
48		VccRx1	3.3V Power Supply	2
49		VS2	Module Vendor Specific 2	3
50		VS3	Module Vendor Specific 3	3
51		GND	Ground	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	
53	CML-O	Rx7n	Receiver Inverted Data Output	

54		GND	Ground	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	
56	CML-O	Rx5n	Receiver Inverted Data Output	
57		GND	Ground	1
58		GND	Ground	1
59	CML-O	Rx6n	Receiver Inverted Data Output	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	
61		GND	Ground	1
62	CML-O	Rx8n	Receiver Inverted Data Output	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
64		GND	Ground	1
65		NC	No Connect	3
66		Reserved	For future Use	3
67		VccTx1	3.3V Power Supply	2
68		Vcc2	3.3V Power Supply	2
69		Reserved	For future Use	3
70		GND	Ground	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	
72	CML-I	Tx7n	Transmitter Inverted Data Input	
73		GND	Ground	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	
75	CML-I	Tx5n	Transmitter Inverted Data Input	
76		GND	Ground	1

Note1: QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

Note2: VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 6. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.

Note3: All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 Kohms and less than 100 pF.

Monitoring Specification

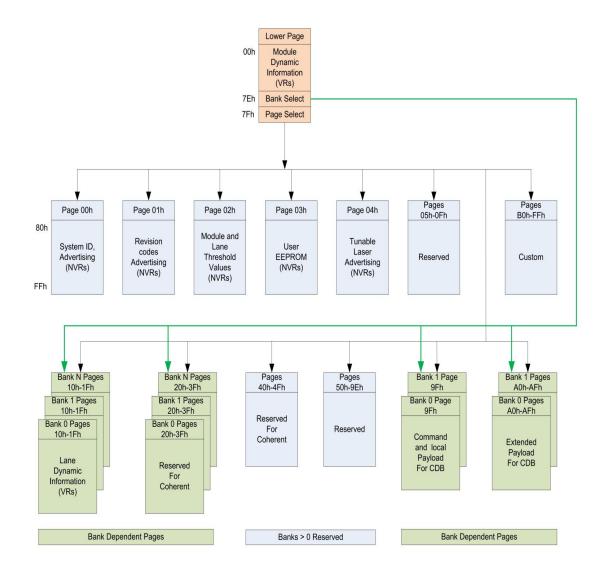


Figure5:Memory map

Memory map Table

Byte	Unit	Name	Description
		Lov	ver Page 00h
0	1	Identifier	Identifier - Type of Serial Module - See SFF-8024.
1	1	Revision Compliance	Identifier – CMIS revision; the upper nibble is the whole number part and the lower nibble is the decimal part. Example: 01h indicates version 0.1, 21h indicates version 2.1.
2-3	2	ID and Status Area	Flat mem indication, CLEI present indicator, Maximum TWI speed,

			Current state of Module, Current state of the Interrupt signal.
4-7	4	Lane Flag Summary	Flag summary of all lane flags on pages 10h-1Fh.
8-13	6	Module-Level Flags	All flags that are not lane or data path specific.
14-25	12	Module-Level Monitors	Monitors that are not lane or data path specific.
26-30	5	Module Global Controls	Controls applicable to the module as a whole
31-36	6	Module-Level Flag Masks	Masking bits for the Module-Level flags
37-38	2	CDB Status Area	Status of most recent CDB command
39-40	2	Module Firmware Version	Module Firmware Version.
41-63	23	Reserved Area	Reserved for future standardization
64-82	19	Custom Area	
04-02	19	Custom Area	Vendor or module type specific use Version Number of Inactive Firmware. Values of 00h indicates
83-84	2	Inactive Firmware Version	module supports only a single image.
			Combinations of host and media interfaces that are supported by
85-117	33	Application Advertising	module data path(s)
118-125	8	Password Entry and Change	Password Entry and Change
126	1	Bank Select Byte	Bank address of currently visible Page
127	1	Page Select Byte	Page address of currently visible Page
		Upi	per Page 00h
128	1	Identifier	Identifier - Type of Serial Module - See SFF-8024.
129-144	16	Vendor name	Vendor name (ASCII)
145-147	2	Vendor OUI	Vendor IEEE company ID
148-163	16	Vendor PN	Part number provided by vendor (ASCII)
164-165	8	Vendor rev	Revision level for part number provided by vendor (ASCII)
166-181	10	Vendor SN	Vendor Serial Number (ASCII)
182-183	2	Date code year	ASCII code, two low order digits of year (00=2000)
184-185	2	Date code month	ASCII code digits of month (01=Jan through 12=Dec)
186-187	2	Date code day of month	ASCII code day of month (01-31)
188-189	2	Lot code	ASCII code, custom lot code, may be blank
190-199	10	CLEI code	Common Language Equipment Identification code
200-201	2	Module power characteristics	Module power characteristics
202	1	Cable assembly length	Cable assembly length
203	1	Media Connector Type	Media Connector Type
204	1	5 GHz attenuation	Passive copper cable attenuation at 5 GHz in 1 dB increments
205	1	7 GHz attenuation	Passive copper cable attenuation at 7 GHz in 1 dB increments
206	1	12.9 GHz attenuation	Passive copper cable attenuation at 12.9 GHz in 1 dB increments
207	1	25.8 GHz attenuation	Passive copper cable attenuation at 25.8 GHz in 1 dB increments
208-209	2	Reserved	Reserved
210-211	2	Cable Assembly Lane Information	Cable Assembly Lane Information

212	1	Media Interface Technology	Media Interface Technology
213-220	8	Reserved	Reserved
221	1	Custom	Custom
222	1	Checksum	Includes bytes 128-221
223-255	33	Custom Info NV	Custom Info NV

Mechanical Dimension

Note:

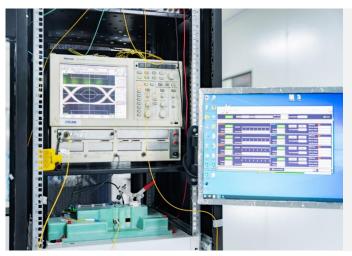
- Unit: mm
- Tolerance: φ0.1mm if not shown
- · Latch color: black
- When L≤2m, the tolerance is ±25mm, when L>2m, the tolerance is ±50mm

Waring:

- The transceiver optics is supplied with a dust cover. This plug protects the transceiver optics during standard manufacturing processes by preventing contamination from air borne particles. It is recommended that the dust cover remain in the transceiver whenever an optical fiber connector is not inserted.
- Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.
- Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Test Center

1. Performance Testing


Every fiber optic transceiver is thoroughly tested by the LSOLINK Assurance Program, which is equipped with the world's most advanced analytical equipment to ensure that our transceivers meet the industry's international public protocol standards while still functioning flawlessly in your facility.

Optical Spectrum Inspection

Using the industry's leading optical spectrum analyser to check in real time that the parameters of the optical transceiver's laser comply with industry standards.

- Peak: Peak wavelength and peak level
- > 2nd Peak: Side-mode wavelength and level
- > Mean WI: Center wavelength
- Total Power: Total power of spectrum
- SMSR: Side-Mode Suppression Ratio

Optical Signal Quality Inspection

Using highly efficient sampling oscilloscopes and BERT testers, equipped with an automated test platform to accurately test the signal quality of the transceiver, test records are kept for up to 5 years to ensure the traceability of each transceiver.

- Eye Mask Margin(NRZ)
- > TDECQ(PAM4):transmitter dispersion eye closure
- > OMA: Optical modulation amplitude
- **BER:** Bit error rate
- ER: Extinction Ratio

Flow Pressure Test

Using multi-protocol network traffic analyser with various brands of switches to test the transceiver's ability to transmit at full speed.

- **Bandwidth:** Actual transceiver bandwidth on the port
- Packet Loss
- Packet Errors:CRC Errors/PCS Errors/Symbol Errors
- LinkDown Counts
- > latency

Aboveis part of our test bed network equipment. For more information, Please click <u>download</u> for optical transceiver performance test report.

2. Quality Control

We adopt advanced quality management solutions. Each transceiver is self-inspected, including:20x microscope inspection, 200x microscope inspection, and QC process inspection.

visual inspection

Microscopic inspection: 20X

Microscopic inspection: 200X

Reliability Verification

Optical endface inspection

OQC Inspection

Order Information

Part Number	Length(m)	Wire Gauge(AWG)	Connector Type	Cable Type	Cable Jacket
400G-QDD-O-CU	1	30	OSFP to QSFP-DD	Passive Copper	PVC
400G-QDD-O-CU	1.5	28	OSFP to QSFP-DD	Passive Copper	PVC
400G-QDD-O-CU	2	28	OSFP to QSFP-DD	Passive Copper	PVC
400G-QDD-O-CU	2.5	28	OSFP to QSFP-DD	Passive Copper	PVC
400G-QDD-O-CU	3	26	OSFP to QSFP-DD	Passive Copper	PVC

Further Information

Lighting the Path to Global Links

- Web | www.lsolink.com
- ☑ Email | For Sales@lsolink.com

Disclaimer

- We are committed to continuous product improvement and feature upgrades, and the contents cont ained in this manual are subject to change without notice.
- 2. Nothing herein should be construed as constituting an additional warranty.
- LSOLINK assumes no responsibility for the use or reliability of equipment or software not provided by LSOLINK. Copyright LSOLINK.COM All Rights