

Product Specification

425Gb/s OSFP to QSFP-DD Active Optical Cable

P/N: 400G-QDD-O-A

Features

- Hot Pluggable QSFP-DD form factor
- Available length range 1m~50m
- Active Optical Cable
- Operating data rate 425Gbps
- Single +3.3V power supply
- Max power dissipation ≤10W
- 8-Channel Full-Duplex Active Optical Cable
- Commercial temperature range 0°C to 70°C

Compliance

- Compliant with QSFP-DD MSA
- Compliant with Electrical Interface SFF-8679
- IEEE802.3bj,IEEE802.3cd
- RoHS

Applications

- 400G Ethernet
- High Performance Computing (HPC)
- Data Center & Networking Equipment
- Switches with QSFP-DD ports

Description

The 400G-QDD-O-A is a high-performance active optical cable (AOC) designed to enable seamless interoperability between OSFP and QSFP-DD interfaces, supporting 400Gbps data rates. Optimized for next-gen data center and HPC environments, it delivers ultra-low-latency, high-density connectivity while overcoming limitations of passive copper solutions. The AOC integrates advanced VCSEL/PD optical engines and OM4/OM5 multimode fiber, ensuring reliable transmission up to 50 meters with minimal power consumption (<10W). Its robust design supports IEEE 802.3bs/cd standards, 400G-SR4.2/FR4 protocols, and backward compatibility with 200G/100G modes via gearbox functionality.

Engineered for flexibility, the 400G-QDD-O-A bridges next-gen 400G OSFP switches with legacy QSFP-DD ports, simplifying network upgrades. It features plug-and-play installation, superior EMI resistance, and extended thermal tolerance (-5°C to 85°C). Compliant with CMIS 5.0 management, the cable enables real-time diagnostics via DDM/DOM for proactive maintenance. Ideal for spine-leaf architectures, AI/ML clusters, and cloud-scale deployments, it ensures future-proof scalability and reduced total cost of ownership (TCO) through energy-efficient operation and extended reach compared to DACs.

Product performance Specifications

1. Basic Product Characteristics

Parameter	Symbol	Min	Тур.	Мах	Unit
Storage Temperature	Ts	-40		85	°C
Operating Case Temperature	Tc	0		70	°C
Relative Humidity	RH	5		85	%
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Data Rate Per Line	DR	1		53.125	Gbp/s
Bit Error Rate	BER			2.4x10-4	

Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

QSFP-DD Optical Module

Figure2:Recommended Interface Circuit

Pin-out Definition

Figure3:Pin view

Pin Function Definitions

Pin	Logic	Symbol	Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		Vcc Rx	+3.3V Power Supply Receiver	
11	LVCMOS-I/O	SCL	2-wire serial interface clock	
12	LVCMOS-I/O	SDA	2-wire serial interface data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	

19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL/RxLOSL	Interrupt. Optionally configurable as RxLOSL via the management interface (SFF-8636)	
29		VccTx	+3.3V Power supply transmitter	2
30		Vcc1	+3.3V Power supply	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	1
39		GND	Ground	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	
42		GND	Ground	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	
45		GND	Ground	1
46		Reserved	For future use	3
47		VS1	Module Vendor Specific 1	3
48		VccRx1	3.3V Power Supply	2
49		VS2	Module Vendor Specific 2	3
50		VS3	Module Vendor Specific 3	3
51		GND	Ground	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	
53	CML-O	Rx7n	Receiver Inverted Data Output	
54		GND	Ground	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	
56	CML-O	Rx5n	Receiver Inverted Data Output	
57		GND	Ground	1
58		GND	Ground	1
59	CML-O	Rx6n	Receiver Inverted Data Output	

SA	k

60	CML-O	Rx6p	Receiver Non-Inverted Data Output	
61		GND	Ground	1
62	CML-O	Rx8n	Receiver Inverted Data Output	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
64		GND	Ground	1
65		NC	No Connect	3
66		Reserved	For future Use	3
67		VccTx1	3.3V Power Supply	2
68		Vcc2	3.3V Power Supply	2
69		Reserved	For future Use	3
70		GND	Ground	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	
72	CML-I	Tx7n	Transmitter Inverted Data Input	
73		GND	Ground	1
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	
75	CML-I	Tx5n	Transmitter Inverted Data Input	
76		GND	Ground	1

Note1: QSFP-DD uses common ground (GND)for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

Note2: VccRx1, VccRx1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 6. VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.

Note3: All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 Kohms and less than 100 pF.

Monitoring Specification

Figure4:Memory map

Memory map Table

Byte	Unit	Name	Description	
Lower Page 00h				
0	1	Identifier	Identifier - Type of Serial Module - See SFF-8024.	
1	1	Revision Compliance	Identifier – CMIS revision; the upper nibble is the whole number part and the lower nibble is the decimal part. Example: 01h indicates version 0.1, 21h indicates version 2.1.	
2-3	2	ID and Status Area	Flat mem indication, CLEI present indicator, Maximum TWI speed,	

			Current state of Module, Current state of the Interrupt signal.			
4-7	4	Lane Flag Summary	Flag summary of all lane flags on pages 10h-1Fh.			
8-13	6	Module-Level Flags	All flags that are not lane or data path specific.			
14-25	12	Module-Level Monitors	Monitors that are not lane or data path specific.			
26-30	5	Module Global Controls	Controls applicable to the module as a whole			
31-36	6	Module-Level Flag Masks	Masking bits for the Module-Level flags			
37-38	2	CDB Status Area	Status of most recent CDB command			
39-40	2	Module Firmware Version	Module Firmware Version.			
41-63	23	Reserved Area	Reserved for future standardization			
64-82	19	Custom Area	Vendor or module type specific use			
83-84	2	Inactive Firmware Version	Version Number of Inactive Firmware. Values of 00h indicates module supports only a single image.			
85-117	33	Application Advertising	Combinations of host and media interfaces that are supported by module data path(s)			
118-125	8	Password Entry and Change	Password Entry and Change			
126	1	Bank Select Byte	Bank address of currently visible Page			
127	1	Page Select Byte	Page address of currently visible Page			
Upper Page 00h						
128	1	Identifier	Identifier - Type of Serial Module - See SFF-8024.			
129-144	16	Vendor name	Vendor name (ASCII)			
145-147	2	Vendor OUI	Vendor IEEE company ID			
148-163	16	Vendor PN	Part number provided by vendor (ASCII)			
164-165	8	Vendor rev	Revision level for part number provided by vendor (ASCII)			
166-181	10	Vendor SN	Vendor Serial Number (ASCII)			
182-183	2	Date code year	ASCII code, two low order digits of year (00=2000)			
184-185	2	Date code month	ASCII code digits of month (01=Jan through 12=Dec)			
186-187	2	Date code day of month	ASCII code day of month (01-31)			
188-189	2	Lot code	ASCII code, custom lot code, may be blank			
190-199	10	CLEI code	Common Language Equipment Identification code			
200-201	2	Module power characteristics	Module power characteristics			
202	1	Cable assembly length	Cable assembly length			
203	1	Media Connector Type	Media Connector Type			
204	1	5 GHz attenuation	Passive copper cable attenuation at 5 GHz in 1 dB increments			
205	1	7 GHz attenuation	Passive copper cable attenuation at 7 GHz in 1 dB increments			
206	1	12.9 GHz attenuation	Passive copper cable attenuation at 12.9 GHz in 1 dB increments			
207	1	25.8 GHz attenuation	Passive copper cable attenuation at 25.8 GHz in 1 dB increments			
208-209	2	Reserved	Reserved			
210-211	2	Cable Assembly Lane	Cable Assembly Lane Information			
212	1	Media Interface Technology	Media Interface Technology			

213-220	8	Reserved	Reserved
221	1	Custom	Custom
222	1	Checksum	Includes bytes 128-221
223-255	33	Custom Info NV	Custom Info NV

Mechanical Dimension

Note:

- Diameter: 3mm
- Minimum bend radius:30mm
- Cable color:Orange(OM2),Aqua(OM3),Magenta(OM4)
- When L≤1m, the tolerance is +5cm
- When 1m≤L≤4.5m, the tolerance is +15cm
- When 5m≤L≤14.5m, the tolerance is +30cm
- When L≥15m, the tolerance is +2%m

Waring:

- The transceiver optics is supplied with a dust cover. This plug protects the transceiver optics during standard manufacturing processes by preventing contamination from air borne particles. It is recommended that the dust cover remain in the transceiver whenever an optical fiber connector is not inserted.
- Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.
- Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Test Center

1. Performance Testing

Every fiber optic transceiver is thoroughly tested by the LSOLINK Assurance Program, which is equipped with the world's most advanced analytical equipment to ensure that our transceivers meet the industry's international public protocol standards while still functioning flawlessly in your facility.

Optical Spectrum Inspection

Using the industry's leading optical spectrum analyser to check in real time that the parameters of the optical transceiver's laser comply with industry standards.

- > Peak: Peak wavelength and peak level
- > 2nd Peak: Side-mode wavelength and level
- Mean WI: Center wavelength
- Total Power: Total power of spectrum
- SMSR: Side-Mode Suppression Ratio

Optical Signal Quality Inspection

Using highly efficient sampling oscilloscopes and BERT testers, equipped with an automated test platform to accurately test the signal quality of the transceiver, test records are kept for up to 5 years to ensure the traceability of each transceiver.

- Eye Mask Margin(NRZ)
- > TDECQ(PAM4):transmitter dispersion eye closure
- > OMA: Optical modulation amplitude
- BER: Bit error rate
- ER: Extinction Ratio

Flow Pressure Test

Using multi-protocol network traffic analyser with various brands of switches to test the transceiver's ability to transmit at full speed.

- **Bandwidth:** Actual transceiver bandwidth on the port
- Packet Loss
- Packet Errors:CRC Errors/PCS Errors/Symbol Errors
- LinkDown Counts
- > latency

Aboveis part of our test bed network equipment. For more information, Please click <u>download</u> for optical transceiver performance test report.

2. Quality Control

We adopt advanced quality management solutions. Each transceiver is self-inspected, including:20x microscope inspection, 200x microscope inspection, and QC process inspection.

visual inspection

Microscopic inspection: 20X

Microscopic inspection: 200X

Reliability Verification

Optical endface inspection

OQC Inspection

Order Information

Part Number	Length(m)	Connector Type	Cable Type	Cable Jacket
400G-QDD-A1	1	OSFP to QSFP-DD	Active Optical	OFNP
400G-QDD-A3	3	OSFP to QSFP-DD	Active Optical	OFNP
400G-QDD-A5	5	OSFP to QSFP-DD	Active Optical	OFNP
400G-QDD-A7	7	OSFP to QSFP-DD	Active Optical	OFNP
400G-QDD-A10	10	OSFP to QSFP-DD	Active Optical	OFNP
400G-QDD-A15	15	OSFP to QSFP-DD	Active Optical	OFNP

Further Information

Lighting the Path to Global Links

- Web | www.lsolink.com
- Email | For Sales@lsolink.com

Disclaimer

- We are committed to continuous product improvement and feature upgrades, and the contents cont ained in this manual are subject to change without notice.
- 2. Nothing herein should be construed as constituting an additional warranty.
- LSOLINK assumes no responsibility for the use or reliability of equipment or software not provided by LSOLINK. Copyright LSOLINK.COM All Rights